OPERATING INSTRUCTIONS AND SPECIFICATIONS

CompactRIO™ cRIO-FRC II

Reconfigurable Embedded Chassis with Integrated Intelligent Real-Time Controller for FIRST Robotics Competition

Figure 1. cRIO-FRC II Front Panel

1. LEDs
2. RJ-45 Ethernet Port
3. Power Connector
4. Reset Button
5. RS-232 Serial Port

Figure 1. cRIO-FRC II Front Panel
This document describes how to connect the cRIO-FRC II to a network and how to use the features of the cRIO-FRC II. This document also contains specifications for the cRIO-FRC II.

Safety Guidelines

Operate the cRIO-FRC II only as described in these operating instructions.

Safety Guidelines for Hazardous Locations

The cRIO-FRC II is suitable for use in Class I, Division 2, Groups A, B, C, D, T4 hazardous locations; Class 1, Zone 2, AEx nC IIC T4 and Ex nL IIC T4 hazardous locations; and nonhazardous locations only. Follow these guidelines if you are installing the cRIO-FRC II in a potentially explosive environment. Not following these guidelines may result in serious injury or death.

⚠️ **Caution** Do not disconnect the power supply wires and connectors from the controller unless power has been switched off.

⚠️ **Caution** Substitution of components may impair suitability for Class I, Division 2.

⚠️ **Caution** For Zone 2 applications, install the CompactRIO system in an enclosure rated to at least IP 54 as defined by IEC 60529 and EN 60529.

Special Conditions for Hazardous Locations Use in Europe

Some chassis have been evaluated as Ex nA nL IIC T4 equipment under DEMKO Certificate No. 07 ATEX 062664X. Each such chassis is marked II 3G and is suitable for use in Zone 2 hazardous locations, in ambient temperatures of $0^\circ C \leq Ta \leq 55^\circ C$.

What You Need to Install CompactRIO Reconfigurable Embedded Hardware

- FIRST Robotics Competition kit, including cRIO-FRC II and FRC software
- C Series I/O modules
- DIN rail mount kit (for DIN rail mounting only)
- Panel mount kit (for panel mounting only)
Two M4 or number 8 flathead screws (for mounting the chassis without one of the listed mounting kits)

❑ A number 2 Phillips screwdriver

❑ Power supply

❑ Ethernet cable

Related Documentation

To find the FIRST Robotics Competition Manual and other helpful documents mentioned in this document, go to the FRC Community Web site at www.usfirst.org/community/frc and select Documents and Updates»Competition Manual and Related Documents.

Mounting the CompactRIO Reconfigurable Embedded Chassis

You can mount the chassis horizontally on a flat, vertical surface. Figure 2 shows the chassis mounted horizontally.

Figure 2. cRIO-FRC II Mounted Horizontally

⚠️ Caution Your installation must meet the following requirements for space and cabling clearance:

- Allow 25.4 mm (1 in.) on the top and the bottom of the chassis for air circulation.
- Allow 50.8 mm (2 in.) in front of modules for cabling clearance for common connectors, such as the 10-terminal, detachable screw terminal connector, as shown in Figure 3.
1 Measure ambient temperature here.

Figure 3. cRIO-FRC II, Bottom View with Dimensions

Note Go to ni.com/info and enter the Info Code rdcrioconn to find the minimum cabling clearance for C Series modules with other connector types.

Figure 4. cRIO-FRC II, Front View with Dimensions
The following sections contain instructions for the mounting methods. Before using any of these mounting methods, record the serial number from the back of the chassis. You will be unable to read the serial number after you have mounted the chassis.

Caution Make sure that no I/O modules are in the chassis before mounting it.

Mounting the Chassis on a Flat Surface Using the NI 9904 Panel Mount Kit

Panel or wall mounting is the best method for applications that are subject to high shock and vibration. You can use the NI 9904 panel mount kit to mount the cRIO-FRC II on a flat surface. Complete the following steps.

1. Fasten the chassis to the panel mount kit using a number 2 Phillips screwdriver and two M4 × 25 screws. National Instruments provides these screws with the panel mount kit. You must use these screws because they are the correct depth and thread for the panel. Tighten the screws to a maximum torque of 1.3 N · m (11.5 lb · in.).
2. Fasten the NI 9904 panel to the wall using the screwdriver and screws that are appropriate for the wall surface. The maximum screw size is M4 or number 8.
Mounting the Chassis Directly on a Flat Surface Using the Mounting Holes

Panel or wall mounting is the best method for applications that are subject to high shock and vibration. If you do not have the NI 9904 panel mount kit and do not require the portability that the NI 9904 affords, you can mount the chassis directly on a flat surface using the mounting holes. Complete the following steps.

1. Align the chassis on the surface.
2. Fasten the chassis to the surface using M4 or number 8 flathead screws, as shown in Figure 8. National Instruments does not provide these screws with the chassis.

![Figure 8. Mounting the Chassis Directly on a Flat Surface](image)

Caution Make sure that no I/O modules are in the chassis before removing it from the surface.

Mounting the Chassis on a DIN Rail Using the NI 9912 DIN Rail Mount Kit

You can order the NI 9912 DIN rail mount kit if you want to mount the chassis on a DIN rail. You need one clip for mounting the chassis on a standard 35 mm DIN rail. Complete the following steps to mount the chassis on a DIN rail.

1. Fasten the DIN rail clip to the chassis using a number 2 Phillips screwdriver and two M4 × 25 screws. National Instruments provides these screws with the DIN rail mount kit. Tighten the screws to a maximum torque of 1.3 N · m (11.5 lb · in.).
2. Insert one edge of the DIN rail into the deeper opening of the DIN rail clip, as shown in Figure 10.

3. Press down firmly on the chassis to compress the spring until the clip locks in place on the DIN rail.
Mounting the Chassis on a Desktop
Using the NI 9901 Desktop Mounting Kit

You can use the NI 9901 desktop mounting kit to mount the chassis on a desktop. You must install the adapter bracket using two M3 × 20 screws. The adapter bracket and the screws are included in the kit. Refer to the NI 9901 documentation for information about mounting the chassis on a desktop.

Installing C Series I/O Modules in the Chassis

Figure 11 shows the mechanical dimensions of C Series I/O modules.

![Figure 11. C Series I/O Module, Front and Side View with Dimensions](image)

Complete the following steps to install a C Series I/O module in the chassis.

1. Make sure that no I/O-side power is connected to the I/O module. If the system is in a nonhazardous location, the chassis power can be on when you install I/O modules.

2. Align the I/O module with an I/O module slot in the chassis as shown in Figure 12. The module slots are numbered 1 to 4, left to right.
3. Squeeze the latches and insert the I/O module into the module slot.
4. Press firmly on the connector side of the I/O module until the latches lock the I/O module into place.
5. Repeat these steps to install additional I/O modules.

Removing I/O Modules from the Chassis

Complete the following steps to remove a C Series I/O module from the chassis.
1. Make sure that no I/O-side power is connected to the I/O module. If the system is in a nonhazardous location, the chassis power can be on when you remove I/O modules.
2. Squeeze the latches on both sides of the module and pull the module out of the chassis.
Connecting the Chassis to Ground

You must connect the panhead screw at the end of the chassis to ground as required by the FRC Game Manual.

Connecting the Chassis to a Network

Connect the chassis to an Ethernet network using the RJ-45 Ethernet port on the controller front panel. Use a standard Category 5 (CAT-5) or better shielded, twisted-pair Ethernet cable to connect the chassis to an Ethernet hub, or use an Ethernet crossover cable to connect the chassis directly to a computer.

Caution To prevent data loss and to maintain the integrity of your Ethernet installation, do not use a cable longer than 100 m.

The first time you power up the chassis, it attempts to initiate a DHCP network connection. If the chassis is unable to initiate a DHCP connection, it connects to the network with a link-local IP address with the form 169.254.x.x. After powerup, you must install software on the chassis and configure the network settings in Measurement & Automation Explorer (MAX).

Note Installing software may change the network behavior of the chassis. For information about network behavior by installed software version, go to ni.com/info and enter the Info Code ipconfigcrio.

Wiring Power to the Chassis

The cRIO-FRC II requires an external power supply that meets the specifications in the Power Requirements section. The cRIO-FRC II filters and regulates the supplied power and provides power for all of the I/O modules. The cRIO-FRC II has one layer of reverse-voltage protection. Complete the following steps to connect a power supply to the chassis.

1. Ensure that the power supply is turned off.

Caution Do not install or remove the power connector from the front panel of the cRIO-FRC II while power is applied.
2. Connect the positive lead of the power supply to the V terminal of the COMBICON power connector shipped with the cRIO-FRC II, and tighten the terminal screw. Figure 13 shows the terminal screws, which secure the wires in the screw terminals, and the connector screws, which secure the power connector on the front panel.

![COMBICON Power Connector](image)

3. Connect the negative lead of the power supply to the C terminal of the power connector and tighten the terminal screw.
4. Install the power connector on the front panel of the cRIO-FRC II and tighten the connector screws.
5. Turn on the power supply.

Powering On the cRIO-FRC II

When you apply power to the cRIO-FRC II, the controller runs a power-on self test (POST). During the POST, the Power and Status LEDs turn on. The Status LED turns off, indicating that the POST is complete. If the LEDs do not behave in this way when the system powers on, refer to the Understanding LED Indications section.

You can configure the cRIO-FRC II to launch an embedded stand-alone LabVIEW RT application each time you boot the controller. Refer to the labVIEW Robotics Programming Guide for the FIRST Robotics Competition for more information.

Restarting the cRIO-FRC II Using the Reset Button

Pressing the Reset button restarts the controller. The FPGA continues to run unless you have selected the Autoload VI on device reboot chassis reset option. Refer to the Chassis Reset Options section for more information.
To restart the cRIO-FRC II in safe mode, press and hold the Reset button for 5 s, until the Status LED lights solid yellow, then release the Reset button. The Status LED then begins blinking three times every few seconds, indicating that the cRIO-FRC II is in safe mode. Refer to the MAX help for information about safe mode.

Controller Startup Options

You can configure the following controller startup options in MAX:

- Safe Mode
- Console Out
- IP Reset
- No App
- No FPGA App

To turn these startup options on or off, select the controller under **Remote Systems** in the MAX configuration tree, then select the **Controller Settings** tab. Refer to the MAX Help for information about the startup options and how to configure the controller.

Chassis Reset Options

Table 1 lists the reset options available on CompactRIO systems such as the cRIO-FRC II. These options determine how the chassis behaves when the controller is reset in various conditions. Use the RIO Device Setup utility to select reset options. Access the RIO Device Setup utility by selecting **Start»All Programs»National Instruments»NI-RIO» RIO Device Setup**.

<table>
<thead>
<tr>
<th>Chassis Reset Option</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not autoload VI</td>
<td>Does not load the FPGA bit stream from flash memory.</td>
</tr>
<tr>
<td>Autoload VI on device powerup</td>
<td>Loads the FPGA bit stream from flash memory to the FPGA when the controller powers on.</td>
</tr>
<tr>
<td>Autoload VI on device reboot</td>
<td>Loads the FPGA bit stream from flash memory to the FPGA when you reboot the controller either with or without cycling power.</td>
</tr>
</tbody>
</table>

Table 1. CompactRIO Reset Options
Connecting Serial Devices to the cRIO-FRC II

The cRIO-FRC II has an RS-232 serial port to which you can connect devices such as displays or input devices. Use the Serial VIs to read from and write to the serial port from a LabVIEW RT application. For more information about the Serial VIs, refer to the LabVIEW Help.

![Controller Serial Port](image)

Figure 14. Controller Serial Port

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
</tr>
<tr>
<td>2</td>
<td>RXD</td>
</tr>
<tr>
<td>3</td>
<td>TXD</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
</tr>
</tbody>
</table>

Table 2. DB-9 Pin Descriptions

Understanding LED Indications

![cRIO-FRC II LEDs](image)

Figure 15. cRIO-FRC II LEDs
POWER LED

The POWER LED is lit while the cRIO-FRC II is powered on. This LED indicates that the power supply connected to the chassis is adequate.

STATUS LED

The STATUS LED is off during normal operation. The cRIO-FRC II indicates specific error conditions by flashing the STATUS LED a certain number of times every few seconds, as shown in Table 3.

<table>
<thead>
<tr>
<th>Number of Flashes Every Few Seconds</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>The chassis has detected an error in its software. This usually occurs when an attempt to upgrade the software is interrupted. Reinstall software on the chassis. Refer to the Measurement & Automation Explorer Help for information about installing software on the chassis.</td>
</tr>
<tr>
<td>3</td>
<td>The chassis is in safe mode. Refer to the Measurement & Automation Explorer Help for information about safe mode.</td>
</tr>
<tr>
<td>4</td>
<td>The software has crashed twice without rebooting or cycling power between crashes. This usually occurs when the chassis runs out of memory. Review your RT VI and check the memory usage. Modify the VI as necessary to solve the memory usage issue.</td>
</tr>
<tr>
<td>Continuously flashing or solid</td>
<td>The chassis has detected an unrecoverable error. Contact National Instruments.</td>
</tr>
</tbody>
</table>

USER1 LED

You can define the USER1 LED to meet the needs of your application. To define the LED, use the RT LEDs VI in LabVIEW. For more information about the RT LEDs VI, refer to the *LabVIEW Help*.

USER FPGA1 LED

You can use the USER FPGA1 LED to help debug your application or easily retrieve application status. Use the LabVIEW FPGA Module and NI-RIO software to define the USER FPGA1 LED to meet the needs of your application. Refer to *LabVIEW Help* for information about programming this LED.
Using the System Clock to Provide Data Timestamps

At startup, the system clock resets to January 1, 1970, 12:00 a.m. (midnight). For information about synchronizing the system clock with an SNTP time server on the network at startup, go to ni.com/info and enter the Info Code criosntp.

Troubleshooting Network Communication

If the cRIO-FRC II cannot communicate with the network, you can perform the following troubleshooting steps.

1. Press and hold the Reset button for 5 s, then release it. The chassis is now in safe mode with output from the serial port enabled. You can use a serial port terminal to read the IP address of the controller. If you want the controller to attempt a new DHCP connection, proceed to step 2.

2. Press and hold the Reset button for 5 s, then release it. The cRIO-FRC II attempts to establish a new DHCP connection. If it fails, it assigns itself a link-local IP address. If the DHCP connection is successful and appropriate for your application, skip to step 4.

3. Configure the IP and other network settings in MAX.

4. Press and release the Reset button to reboot the chassis.

Specifications

The following specifications are typical for the –0 to 55 °C operating temperature range unless otherwise noted.

Network

Network interface10BaseT and 100BaseTX Ethernet
CompatibilityIEEE 802.3
Communication rates10 Mbps, 100 Mbps, auto-negotiated
Maximum cabling distance100 m/segment
RS-232 Serial Port

- Maximum baud rate: 230,400 bps
- Data bits: 5, 6, 7, 8
- Stop bits: 1, 2
- Parity: Odd, Even, Mark, Space
- Flow control: RTS/CTS, XON/XOFF, DTR/DSR

Memory

- Nonvolatile memory: 256 MB
- System memory: 128 MB

For information about the life span of the nonvolatile memory and about best practices for using nonvolatile memory, go to ni.com/info and enter the Info Code SSDBP.

Reconfigurable FPGA

- FPGA type: Xilinx Spartan-6 LX 45
- Number of flip-flops: 54,576
- Number of 6-input LUTs: 27,288
- Number of DSP48s: 58
- Available block RAM: 2,088 kbits
- Number of DMA channels: 5

Power Requirements

⚠️ Caution ⚠️ You must use a UL Listed ITE power supply marked LPS with the cRIO-FRC II.

- Recommended power supply: 24 W, 24 VDC
- Power consumption: 15 W maximum
- Power supply input range: 9 to 30 V
Physical Characteristics

If you need to clean the controller, wipe it with a dry towel.

Screw-terminal wiring0.5 to 2.5 mm2 (24 to 12 AWG) copper conductor wire with 10 mm (0.39 in.) of insulation stripped from the end

Torque for screw terminals0.5 to 0.6 N · m (4.4 to 5.3 lb · in.)

Weight ..643 g (22.7 oz)

Safety Voltages

Connect only voltages that are within these limits.

V terminal to C terminal30 V max, Measurement Category I

Measurement Category I is for measurements performed on circuits not directly connected to the electrical distribution system referred to as MAINS voltage. MAINS is a hazardous live electrical supply system that powers equipment. This category is for measurements of voltages from specially protected secondary circuits. Such voltage measurements include signal levels, special equipment, limited-energy parts of equipment, circuits powered by regulated low-voltage sources, and electronics.

⚠️ Caution Do not connect the system to signals or use for measurements within Measurement Categories II, III, or IV.

Safety Standards

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

⚠️ Note For UL and other safety certifications, refer to the product label or the Online Product Certification section.
Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326 (IEC 61326): Class A emissions; Industrial immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note For the standards applied to assess the EMC of this product, refer to the Online Product Certification section.

Note For EMC compliance, operate this product according to the documentation.

CE Compliance

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EEC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the Declaration of Conformity (DoC) for this product for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

National Instruments is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the NI and the Environment Web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.
Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products must be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法（中国RoHS）

中国客户 National Instruments符合中国电子信息产品中限制使用某些有害物质指令（RoHS）要求。关于National Instruments中国RoHS合规性信息，请登录ni.com/environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Hazardous Locations

U.S. (UL) ..Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, AEx nC IIC T4

Canada (C-UL) ...Class I, Division 2, Groups A, B, C, D, T4; Class I, Zone 2, Ex nL IIC T4

Europe (DEMKO) ...Ex nA nL IIC T4

Environmental

Operating temperature
(IEC 60068-2-1, IEC 60068-2-2)−20 to 55 °C

Note To meet this operating temperature range, follow the guidelines in the installation instructions for your CompactRIO system.

Storage temperature
(IEC 60068-2-1, IEC 60068-2-2)−40 to 85 °C

Ingress protectionIP 40

Operating humidity
(IEC 60664-2-56)10 to 90% RH, noncondensing

Storage humidity
(IEC 60664-2-56)5 to 95% RH, noncondensing

Pollution Degree (IEC 60664)2

Maximum altitude..................................2,000 m

Indoor use only.
Shock and Vibration

To meet these specifications, you must panel mount the CompactRIO system and affix ferrules to the ends of the power terminal wires.

Operating shock
(IEC 60068-2-27) 30 g, 11 ms half sine,
 50 g, 3 ms half sine,
 18 shocks at 6 orientations

Operating vibration, random
(IEC 60068-2-64) 5 g, 10 to 500 Hz

Operating vibration, sinusoidal
(IEC 60068-2-6) 5 g, 10 to 500 Hz

Where to Go for Support

The National Instruments Web site is your complete resource for technical support. At ni.com/support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world to help address your support needs. For telephone support in the United States, create your service request at ni.com/support and follow the calling instructions or dial 512 795 8248. For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office Web sites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.